Acta Cryst. (1972). B28, 3502

The Crystal Structures of the Molecular Complexes between Benzidine and 7,7,8,8-Tetracyano-*p*-quinodimethane. I. Benzidine-TCNQ Complex Containing Dichloromethane

By Isao Ikemoto, Kazuhiro Chikaishi,* Kyuya Yakushi and Haruo Kuroda

Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan

(Received 19 June 1972)

Crystals of the 1:1 complex of benzidine and 7,7,8,8-tetracyano-*p*-quinodimethane (TCNQ), containing dichloromethane in the crystal lattice, are monoclinic, space group I2/m, with a=20.892, b=9.950, c=6.445 Å, $\beta=91.92^{\circ}$, Z=2. The structure was refined by three-dimensional analysis using the block-diagonal and full-matrix least-squares method. Benzidine and TCNQ molecules are alternately stacked along the *c* axis to form columns, with the molecular planes almost parallel to each other. Between the columns there are channels running along the *c* axis, in which dichloromethane molecules are sited.

Introduction

Benzidine (BD) and 7,7,8,8-tetracyano-*p*-quinodimethane (TCNQ) were found to form solid molecular complexes, which contain solvent molecules in the crystal lattice as well as the solvent-free complex (Ohmasa, Kinoshita & Akamatu, 1969). Examples of the solvent that can enter into the lattice of the BD-TCNQ complex are acetone, acetonitrile, dichloromethane, 1,2-dichloroethane and benzene.

From the X-ray powder diffraction patterns, the crystal structures of the solvent-containing complexes were found to vary more or less depending on the solvent contained. It was also known that a solvent-containing complex gradually loses solvent molecules to form the solvent-free complex when the crystals are kept in vacuum for a long period.

The electrical and magnetic properties of the solventcontaining complexes differ markedly from those of the solvent-free complex, and are appreciably dependent on the kind of solvent contained in the lattice (Ohmasa, Kinoshita & Akamatu, 1971a, b).

In view of these interesting behaviour of the solventcontaining complexes, it is of particular interest to elucidate the role of solvent molecules in the structural and physical aspects of these solids. Thus we have decided to perform the crystal-structure analysis on this series of molecular complexes. In the present paper we report the crystal structure of the BD-TCNQ complex that contains dichloromethane.

Experimental

Crystals of the complex were precipitated when dichloromethane solutions of benzidine and TCNQ were mixed. They were redissolved in hot solvent consisting of a 1:1 mixture of dichloromethane and 1,2dichloroethane. By allowing the solution to cool slowly, well-grown, dark-green needle-like crystals were obtained, which were elongated along the c axis. Chemical analysis of these crystals indicated the molecular ratio of the components, BD:TCNQ:CH₂Cl₂, to be 1:1:1.8.

Lattice constants were determined by a least-squares analysis of eight diffraction lines observed with an automatic recording X-ray diffractometer, Geigerflex, by using sodium chloride as an internal standard.

Crystal data

Monoclinic $a = 20.982 \pm 0.019$ Å, $b = 9.950 \pm 0.005$,

- $c = 6.445 \pm 0.005$
- $\beta = 91.92 \pm 0.13^{\circ}$
- $V = 1338 \cdot 8 \text{ Å}^3$
- Formula: $C_{12}H_{12}N_2 \cdot C_{12}H_4N_4 \cdot 1.8 \text{ CH}_2Cl_2$; F.W.541
- D_x (calculated density) = 1.349 cm⁻³
- D_m (measured density) = 1.40
- Z=2
- $\mu = 4.68 \text{ cm}^{-1}$ (Mo K α)

Space group 12/m (from Weissenberg and precession photographs)

(Absent spectra: hkl when h+k+l is odd, h0l when h+l is odd, 0k0 when k is odd).

Intensity data were first obtained up to the fourth layer around the c axis from the Weissenberg photographs by using the multiple-film technique. The data on the h0l, 1kl, 2kl reflexions were collected from the precession photographs. Ni-filtered Cu K α radiation was used and the intensities were determined visually. The corrections for the Lorentz and polarization factors were made in the usual way, but no correction was made for absorption. The number of observed reflexions was 320 at this stage. These data were used in the preliminary analysis to obtain an approximate structure.

In the next stage of analysis, the intensity data were

^{*} Present address: Sumitomo Chemical Co., Ltd., 3-278 Kasugade, Konohana, Osaka, Japan.

redetermined with Rigaku-Denki computer-controlled four-circle diffractometer using monochromatized Mo K α radiation. The reproducibility of the measurement was checked by measuring the $00\overline{2}$ and 020 reflexions every fifty reflexions. Among the 1670 independent reflexions in the range $2\theta \le 55^\circ$, intensity data were obtained for 828 (729 of which were three times larger than their standard deviations) and used in the refinement. All the reflexions were measured by the θ -2 θ scan technique at a 2 θ scan rate of 1.0° min⁻¹. The scan range $\Delta 2\theta$ was varied according to the formula: $\Delta 2\theta = 2^{\circ} + 0.9^{\circ} \tan \theta$. The background settings were those given by the expression $2\theta \pm 0.9 \times \Delta 2\theta$, and at each point background counts were taken for 10 sec. For a count rate above 16,000 c.p.s., attenuators were automatically inserted in the incident beam. The intensities were corrected for bakcground and for Lorentz and polarization effects, and were reduced to the structure amplitude, $|F_o|$.

Structure determination and refinement

From the consideration of the space group, the symmetry of the component molecules and the number of molecules in the unit cell, the position of molecular centre was easily determined as (0, 0, 0) and $(0, 0, \frac{1}{2})$ respectively for benzidine and TCNQ. There are two possible orientations for each molecule. Hence we can consider four possible structures. The structure factor was calculated for these four trial structures, and the one which gave the lowest *R* value was chosen as the

starting model. The position of dichloromethane was determined from the difference Fourier map.

When we calculated the R value for this approximate structure, using the intensity data from the diffractometer, we obtained 0.45. Block-diagonal least-squares refinement with isotropic temperature factors reduced the R value to 0.23. With anisotropic temperature factors, the R value became 0.20. The number of dichloromethane molecules in the unit cell has to be considered as more or less uncertain, since the solvent molecules tend to be lost from the crystal. We took this factor into account by allowing the multiplicity of the dichloromethane molecule to be variable in the full-matrix least-squares refinement.

Although the reproducibility of measurement was ensured after every fifty measurements, one of these sets, comprising 50 reflexions, was suspected to be spurious since the coincidence between F_o and F_c was unsatisfactory, while a good agreement was found when photographic data were used. Thus in the final least-squares analysis we eliminated the data belonging to this particular set, as well as those obtained by the measurement following this spurious set. Using the remaining 605 reflexions, a full-matrix refinement with anisotropic temperature factors was carried out, which brought the R value down to 0.12 and the multiplicity of the dichloromethane molecule to 0.42. This value of the multiplicity corresponds to 1.7 dichloromethane molecules per unit formula, which is in satisfactory agreement with the value estimated from the chemical analysis, 1.8.

Fig.1. Projection of molecular arrangement onto the (001) plane.

3504

255

503

849

1190

N(2)

 CH_2Cl_2

C(9)

Cl(1)

Cl(2)

The final parameters are given in Table 1 together with their standard deviations. The observed and calculated structure factors are lis

1253

1015

1406

2193

3487

4084

5539

8613

-209

0

0

0 -1219

46

560

-282

-126

0

0

0

Table 2. Observed and calculated structure factors

culated structure factors are listed in Table 2					K FO FC	× F0 FC	K F0 FC	K F0 FC	N FØ FC	K \$0 \$C	* F0 FC	K fù ⊧u		
culated structure factors are listed in Table 2.						H.L.8 -3 1 N 14 -54	H+L* 24 1 3 39 42	1 470 51V 3• 32 52	3 79-101 5 87-103	2 87 -83 0• 23 -18	0 140 130 2 70 80	H.L 6 5 J 62 87	u. 23 -22 H.L. 3 8	
							1 . 75	H.L. 25 1	5. 31 21 / 121 140 9 105 110	H.L=-15 3 2 64 -67 4 205-714	8+ 22 -10 H.L. 8 3	4. 32 -41 6 30 41 8 71 70	7 01 00 HILE -5 7	1.29 -30
							5 3A 3V 7 40 -34	1. 29 -36	J 300-344	6 74 -71 m.L=-14 3	5+ 21 18 H.L.# 9 3	10. 29 24	4 09 85	24 24 -8 H-L4 7 8
	Ta	ble 1. At	omic p	paramet	ers		9 23 24 2 93 111 2 93 111	H.L20 2 1 71 - 42 2 53 -51	2 125-112 4 217-220 6 63 -67	1 42 51 3 85-110 5 89-100	0 68 -62 2- 31 -27 4 70 -65	1 260 289 3- 20 -16 7 90 112 9 107 113	1 20 -10	1 28 12 3 23 18
(a) Atomic coordinates $(\times 10^4)$ as fractions of the cell edges						8-31 30 H.L 0 1	6- 25 -24 8 A3 -55	H.L. 3 2 1 57 50	H.L -13 3 0 71 81 2 29 -33	H.L. 10 3 1. 25 -24 3 41 39	H.LS U 4 U 348 351 2 37 41	5+ 25 27 HILE -3 5	2 35 -19	
and their	stand	ard deviat	ions (>	< 10 ³ Å) i	n parent	heses	3 40 64 9 44 - VV 7+ 21 31	1 73 -79 50 74 14 7 411 -47	5 83 86 7 45 43 11• 23 17	4+ 22 -27 10+ 25 3 H.L-11 3	• 40 4/ • 28 30	4 58 -/* 0* 2* 25 8 1/0 120	4+ 33 29 10+ 22 12 Hite -2 5	1 50 -50 7 27 -34
		x		у		Z	0 03 54 2 115 110 4+ 20 21	4. 4. 43 2. 21 17 5. 317	0 86 -98 2 117-118 6• 33 -24	2 51 5# 4 42 42 6+ 34 36	3 41 -28 7• 22 -4 9• 20 16	10 10 14 1 174 193 / 61 93	2 20 24	u. 20 -32 M.L. 11 6 1. 33 -14
BD							1 123 - 20	3+ 33 42	8 43 -43 H.L. 5 2	H.L=-10 3 1 67 -60	H.L. 13 3 U 104 104	9 69 74 H-LT 2 4	1. 21 33	3 46 -11 H.L.# 12 6
C (1)		361 (14)		0 (0)		50 (11)	7 NA -07	3 28 - 29 V 75 17	3 54 -04 5 45 30	5 60 -56	0+ 20 -32 0 36 37	2. 22 10 4 44 -50	M.L. 1 5	H.L. 13 6
C(2)		711 (9)	1	198 (9)	1	35 (7)	0- 27 38 2 101-124	H.L=-14 2 40 77 -40	H.L. 6 2 U 154 162	11• 27 -10 H.L9	H.L. 14 3 1. 28 -7	1 91 -8/	6 97 -50 4 43 -41	H.L. 15 6 1+ 25 14
C(3)		1370 (8)	1	207 (9)	16	52 (7)	6 27 -17	4+L=-13 2	4- 10 1	2. 22 7	3 155-168	7. 25 -20	00 20 -37 H.L. 2 5	H.L. 18 6 J 38 -38
C(4)		1721 (12)		0 (0)	2	2 (11)	1 50 42	3. 10 57 7. 34 24	1 123-128	H.L8 3 1 63 63	4 37 - 35 + 159-170	0 87 80 2 48 40	- L= 3 5 + 53 62	0+ 30 /1 H.L 14 7
N(1)	2	2390 (14)		0 (0)	29	99 (13)	3 293 302 5 154 169	H.L12 2	3 60 -60 5 116-11-	5 25 30 7 3	6 50 -50 H.L.# 16 3	• 86 96 • 32 3/	1. 29 -24	3+ 28 -36 H.L9 7
TONO							11 55 57	H.L 11 2 1 132-114	4. 28 -26 H.L. 6 2	2 115-115	1 25 12 3 35 - 45 5 39 - 40	1 41 -4v 3 894	3 68 76	4 25 -10
ICNQ							0 210-220 2 279 298	3 51 - 14 / 57 - 72	u 75 -68 2 136 120	8 47 -40 H.LT -6 3	** 20 -10	3. 29 -32	0+ 25 -41 2 66 76	H.LL -6 7 3. 29 42
C(5)		329 (9)	1	250 (9)	501	8 (8)	6 118 105 12 85 52	H-L+-10 2	6 51 40	3 196 214	4- 28 .32 Hill 18 .3 3- 26 .33		4 85 V6 0 4, 51	u 22 -13
C(6)		666 (13)		0 (0)	505	55 (12)	1 200-254	4 59 7H	1 185-184	7+ 30 34	5 38 36	8. 27 24	3. 2. 1.	4 48 47
C(7)		1327 (14)		0 (0)	510)4 (11)	3- 34 16 7 53 -53	0 20 -20 0 10 -70	7 AE -82 7 41 -92	0 101-18	0+ 30 27	54 /1 -1/ H.L. 8 4	30 18	5+ 33 37
C(8)		1707 (11)	1	203 (11)	514	8 (8)	46-52 H.LT 7 1 0 718 218	1 122-144	J 139-125	2 101 107	** .13 36 ** . L = 24 3	2. 12 - 37	2· 20 - 30	10 25 36 m.cs -1 7
N(2)		1992 (10)	2	2177 (11)	515	57 (8)	2 40 34 4 156 156	20 26 27 20 32 -55	4 27 36 6 42 -50	8. 31 - 32	1. 31 11	0 41 -40 10+ 31 -10	3. 27 -17	** 21 -V *** 3 7 * ** *1
CH,Cl,							H.L* 0 1 1~ 18 -14 3 129-140		10 - 20 - 20 10 - 20 - 20 L = 11 - 2 1 - 44 - 33	1 22 -30 3 77 77 5 65 61	0+ 23 -10 -14-21	3 43 20	4. 3. 31 H.L= 13 5 D. 20 46	64 24 17 4 7 3 39 48
C		3548 (30)		0.(0)	667	2 (18)	5 41 -37 7 38 -43	4. 27 -5 10. 21 -6	7 32 -27 + 25 -15	0 147 107	00 - 09	7- 30 -41	• 17 -91 • 33 -32	U= 26 -31 2+ 22 19
		3738 (12)		0(0)	404	(10)	2. 23 3	1. 34 1A	0 27 - 35	2• 18 14 4 90 150	30 - 10	2 03 -08	3 0/-101	4 37 41 H.C. 6 7
Cl(2)	-	4253 (16)			818	14 (7) 12 (11)	H.L. 10 1 3 01 90	/* %*	1 2 2 2	1 133-140 3 149-105	7 40 -27 H.L10 4	6 43 -47 8 27 -77	7 47-105 H.L. 15 5 2. 31 -32	34 26 17 H.L.3 -2 8
0.(2)		(10)		0(0)	010	2 (11)	H.L. 11 1 0 198-163	2 72 - 107	H.L. 14 2 U. 20 20	5 62 -77 7 60 -66 11* 33 -14		0-20 4	• 1.1-1.4 • 30 - 30	2 37 20 H.L.F -1 8
(b) Thermal	paran	neters (×	10⁵). T	he β_{ij} va	alues ref	er to the	2 59 -56 4. 22 -15 8 44 -44	6+ 21 - 5 6+ 20 13 H.L -5 2	8 22 1 - L= 15 7 1 22 3	H.LE -1 3 0 78 76 2 133 154	2+ 24 11 1	1. 22 1/	1.22 7	1 65 77 H.L. 0 8 U 68 78
expressio	n:						M.L. 12 1 1 109 115 3 43 58	1• 30 27 3• 22 -29 5 72 74	3. 30 -32 7. 26 -20	4 37 43 6 42 48 8• 30 40	4+ 20 -17 H.L12 4	** 34 24 *** 1 4	1 30 -42	2 37 23
exp [-	$-(h^2\beta_{11})$	$+k^2\beta_{22}+k^2$	$l^2\beta_{33}+h$	$k\beta_{12} + hl_{\mu}$	$\beta_{13} + kl\beta_2$	3)].	5 80 P5 V 41 34 H.L.B 13 1	7. 23 -23 9. 27 10 H.LE -4 2	4- 33 39 H.L. 17 2 3 50 50	3 45 60 54 26 - 31	1 H9 -89 3 24 -33	1 55 -61 4.LE 20 4	u 62 -60	
	R	ß	ρ	p	D	0	4 83 -93	4 -4 106	4, 40	U 79 -75	7 40 -30 7 40 -30	4. 23 22	1- 30 -28	
BD	p_{11}	<i>P</i> ²²	p_{33}	p_{12}	p_{13}	p_{23}	8 37 33 H-L= 14 1 3 180-711	1 235-247	1 69 .76 7 56 .51	• 49 -97 • 37 -43	0 45 -6J 2 39 -47 4 49 59	4+ 26 27 HILE-10 5 5+ 30 26	H.L0 6 U- 34 -28 0 57 4	
C(1)	234	455	1/37	Δ	- 184	0	5 197-2-7 H-L* 15 1	96-105 /• 22 -22	0 50 -05 2 30 -47	3 17 - 24	- 47 - 47 	4 36 -29	0 - 32 52	
C(2)	141	673	1565	55	- 104	100	4 31 - 32	47 -50 M.LS -2 C	4 2 31 	7 30 -25	/ 30 -33 4 30 -35	3 0' - 74	···· · · · · · · · · · · · · · · · · ·	
C(2)	83	624	2380	-142	- 42	100	0 52 -74 8 39 4u	2 163 144	27 .13	21 23	75 -67	2 3 - 3 - 3 -		
C(3)	70	785	1062	- 142	20	101	H.L. 10 1	6 62 44 8 80 84	H.L - 24 3 3- 32 26	4 68 70 H.L. 4 3	1 47 44	4 122-131	2 38 -7	
N(1)	196	1128	1902	0	- 27	0	3 80 -A0 3 81 -A0 H.L* 17 1	10-20 21	1. 25 22	3 169 174	0 28 22	3 65 -71	2 37 36	
	1,20	1120	4121	U	- 21	0	40 24 50 40 24 50 40 10 1	3 113 -94 7 39 -43 7 97 122	5. 28 -: 21 -: 4. 25 -:21	11 28 37	2 49 -30	0 47 45 0 47 45	8 47 52 ".LE -1 6 1 136 148	
IUNQ							5 47 %4 H+L# 19 1	+ 115 129 +.L= 0 2 0 850 914	6+ 23 -5 H.L19 3 4+ 24 34	0 139-140 2 118 139	5 44 53 Mili - 4 4		3• 27 -7 7 71 74	
C(5)	184	811	1829	125	178	178	u 42 -11 0+ 23 -n	2 91 139 53 -72	8+ 25 -14 H.L=-10 3	6 71 73 6 25 -17	• • • • • • • • •	0 21 24	0 159 172	
C(6)	77	1101	1880	0	-139	0	4.Le 21 1 4. 23 33 20 25 32	0 200 209	5+ 29 4.	1 43 58	1 74 - 79	29 -25 	0 /1 20 0 /1 03	
C (7)	179	585	1396	0	13	0	H+L# 22 1 1+ 21 /1	12+ 28 -25	4+ 21 - 4 H.L16 3	3 54 55	3. 32 -24	4. 20 -9	1 53 58	
C(8)	189	952	2228	21	36	- 73					2 4	• 37 •u	m 2 6	

Results and discussion

The projections of the crystal structure along the c and b axes are shown in Fig. 1 and Fig. 2 respectively. The

Fig. 2. Projection of molecular arrangement onto the (010) plane.

thermal ellipsoids of the individual atoms drawn by the ORTEP program (Johnson, 1965) are shown in Fig. 3.

Benzidine and TCNQ molecules form columns along the c axis, in which benzidine and TCNQ are alternately stacked with their molecular planes almost parallel to each other. Between these molecular columns, channels run along the c axis. Each channel is surrounded by four columns composed of benzidine and TCNQ. It is in these channels that the dichloromethane molecules are sited. The distance between an N atom of a benzidine molecule and the nearest N atom of a TCNQ molecule in the neighbouring molecular column is $3 \cdot 110$ Å (as shown in Fig. 1). This N···N distance is shorter than the value expected for a van der Waals contact. Thus it is likely that the benzidine-TCNQ columns are linked together by N···N=C hydrogenbond network to stabilize the channelled structure.

The arrangement of donor and acceptor molecules described above resembles that in the anthracene– TCNQ complex (Williams & Wallwork, 1968). In the latter, however, no solvent-containing complex is obtainable. Seemingly this difference is associated with the situation that a channelled structure is stabilized by the intermolecular hydrogen bonds in the benzidine– TCNQ system but not in the anthracene–TCNQ system.

The relative orientation of TCNQ with respect to the neighbouring benzidine molecule is shown in Fig. 4. In the polarized absorption spectrum of this complex,

Fig. 3. The atomic numbering of the molecules. Ellipsoids represent anisotropic thermal parameters.

Fig.4. Relative orientation of BD with respect to TCNQ found in the crystal.

it has been found that the direction of the transition moment of the second charge-transfer band is nearly perpendicular to that of the first charge-transfer band (Amano, Kuroda & Akamatu, 1969). We have carried out a theoretical investigation on the electronic transitions expected for the molecular arrangement shown in Fig. 4, and found that the anomalous polarization of the second charge-transfer bands can be understood with this molecular arrangement.

The benzidine and TCNQ molecules can be considered to be planar. The equations of the molecular planes were calculated by the method of least squares. The equations thus obtained are:

$$-0.0378 X + 0.0 Y + 1.0000 Z = 0.00$$

for benzidine, and

$$-0.0259 X + 0.0 Y + 1.0000 Z = 3.222$$

for TCNQ, where X, Y and Z are coordinates with respect to the crystal axes a, b and c (in Å units). These two planes make an angle of 0.7° with each other. The mean separation between the molecular planes is 3.22Å which is smaller than the usual van der Waals separation. The deviations of atoms from the least-squares planes are listed in Table 3.

 Table 3. Atomic deviations (Å) from the least-squares planes of the BD and TCNQ molecules

BD		TCNQ	
C(1)	0.004	C(5)	0.006
C(2)	-0.001	C(6)	0.001
C(3)	-0.004	C(7)	0.003
C(4)	0.001	C(8)	0.006
N(1)	0.004	N(2)	-0.003

The distances between the atoms of the neighbouring benzidine and TCNQ molecules are listed in Table 4.

Table 4. Distances less than 3.5 Å between atoms of the nearest-neighbour BD and TCNQ molecules and their standard deviations (Å)

BD···TCNQ	
$C(4) \cdots C(8)$	3.475 (14)
$C(4) \cdots C(7)$	3.366 (15)
$C(2) \cdots C(6)$	3.452 (14)
$C(2) \cdots C(5)$	3.336 (11)
$C(1) \cdots C(5)$	3.472 (13)
$C(1) \cdots C(6)$	3.302 (17)
$C(3) \cdots C(7)$	3.472 (12)
$C(3) \cdots C(8)$	3.330 (12)

The bond lengths and bond angles in each molecule are illustrated in Figs. 5 and 6, together with the standard deviations. These values have not been corrected for thermal motion.

The molecular dimensions of TCNQ have been reported for the TCNQ crystal and for various TCNQ complexes. It is well known that the bond lengths of TCNQ vary systematically with its formal charge. The bond lengths found in the present complex fall between those for the neutral TCNQ and mononegative TCNQ ion, but are closer to the former. In the benzidine molecules, the C-C bonds in its benzene rings are of almost equal length, but the bond connecting the two benzene rings is rather long, 1.509 Å. Unfortunately no data are available for the molecular dimensions of benzidine, or of its ion, with which the present results can be compared.

As shown in Table 1, the standard deviations of the atomic coordinates (especially those of the carbon atoms) and temperature factors of the dichloromethane molecule are rather large. This is naturally to be expected from the presence of appreciable defects in the lattice of this complex; for example, there are only 3.4 dichloromethane molecules in the unit cell, although there are four sites for dichloromethane. It was also found that the correlation among the atomic parameters of dichloromethane is large. Consequently, the atomic parameters of the molecule could not be accurately determined.

The authors wish to thank Professor Hideo Akamatu, Dr Minoru Kinoshita and Dr Masatake Ohmasa for valuable discussions. We are also grateful to Professor Yoshihiko Saito for helpful suggestions and advice.

The computer used was the HITAC 5020E at the Computer Centre, University of Tokyo. The programs used were the UNICS programs (Sakurai, 1967).

References

- AMANO, T., KURODA, H. & AKAMATU, H. (1969). Bull. Chem. Soc. Japan, 42, 671.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

Fig. 5. Bond lengths and their e.s.d.'s (Å), and bond angles and their e.s.d.'s (°) in BD and dichloromethane.

Fig. 6. Bond lengths and their e.s.d.'s (Å), and bond angles and their e.s.d.'s (°) in TCNQ.

OHMASA, M., KINOSHITA, M. & AKAMATU, H. (1969). Bull. Chem. Soc. Japan, 42, 2402.

- OHMASA, M., KINOSHITA, M. & AKAMATU, H. (1971a). Bull. Chem. Soc. Japan, 44, 391.
- OHMASA, M., KINOSHITA, M. & AKAMATU, H. (1971b). Bull. Chem. Soc. Japan, 44, 395.
- SAKURAI, T. (1967). Universal Crystallographic Computation Program System. Published by the Crystallographic Society of Japan.
- WILLIAMS, R. M. & WALLWORK, S. C. (1968). Acta Cryst. B24, 168.